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Abstract The electromagnetic field coupled to a model of a semi-infinite plasma is quantized. 
A technical difficulty, related to the choice of gauge in the presence of the plasma surface, is 
resolved by appeal to the Power-Zienau transformation, far enough to allow level shifts to 
be calculated for nearby overall-neutral atoms or molecules outside the plasma. Charged 
systems are not covered. The level shifts, functions of plasma frequency and distance, are 
displayed as Laplace transforms, simple asymptotic forms being given for small and for large 
distances. Special treatment is needed for excited states. The results are compared to a 
recently proposed classical model: and to expressions based on Lifshitz's theory, which 
appears to be neither designed nor adequate to deal with excited states. 

faexcited atom radiates not in isolation but near a macroscopic body, then both the 
e o n  rate and the frequency of the light suffer changes that depend on the distance 
h n  the body and the atom. Quantum mechanics gives the rate by the golden rule, 
&the frequency shift as the difference between the energy shifts of the initial and final 
&. But recently, Chance et al (1974, 1975a,b,c; these authors will be referred to as 
CPS) have given classical arguments which provide some interesting insight ; they also 
kre the advantage that they deal directly with the frequency shift, and can easily 
" m d a t e  realistic optical properties of the macroscopic medium. By contrast, 
bgwithLifshitz(1955) (see also Dzyaloshinskii er a1 1961), very powerful quantum 

have been developed for evaluating the ground state shift ; the recent literature 
Bn traced from Heinrichs (1975) and Mukhopadhyay and Lundqvist (1975). This 
adcanalso accomodate quite involved properties of the medium ; but in its present 
*ofdevelopment it is not applicable to excited states (nor consequently to frequency 
a). One can discover this limitation either from the details of the theory, or more 
NY by noting that by design it is essentially an equilibrium theory, which is of course 
@Wtible with its successes when applied to molecular forces. 

Thus the situation is ripe for beginning to construct a full quantum treatment of 
*effectsagainst which other approaches can be assessed ; and in the present explora- 
lory attack On frequency shifts it seemed safest to set up a simple model of the medium 
*can be dealt with explicitly and transparently by elementary perturbation theory. 
SPcheqlicittrQtment lessens the risk, which experience in this field shows to be serious, 
?wmF'liated Or very general formalism used ab initio may obscure, or even mask a 
*hgof7the basic physics. It also brings into the open a problem in quantizing the 
homa@eticfield in the presence of an interface which as far as we know has not been 
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stated before. We feel that it would be unwise to expect such a problem to be dimlvtd, 
&hind the Scene as it were, by some general response-function t y p  formalism, rathn 
&an resolve it explicitly. In this context it is also unwise to trust the popular oversm% 
fied atomic models, because the harmonic oscillator model has peculiarities making it 
deceptive in assessing the limits of validity of classical analogies, while the mo-ied 
model is inconsistent with quantum mechanics, as was shown elsewhere (Barton 1974, 
to be referred to as I). Indeed, the relation between classical and quantum results 
turn out more subtle than might perhaps have been expected, and does not admit d 
classical prediction of frequency shifts (though it is useful for widths); while for exbid 
States the results of the Lifshitz theory, naively applied, are sometimes right and 
rimes wrong. 

The simplest situation is one where the medium, taken to occupy the halfspacc 
z < 0, is a perfect conductor, excluding electromagnetic fields completely. Theatomis 
placed in uucuo a distance z outside the medium. The frequency shifts for this case weR 
given in I; and the linewidth has been discussed by Philpott (1973). In the present papa 
we make the minimal extension needed to illustrate the effects of field penetration into 
real media. To this end we construct a model inspired by some of the relevant featuresofa 
metallic plasma; qualitatively speaking we retain its collective but not its single-plutlde 
aspects. The medium is defined to consist of a continuous charged fluid, having m a  
density Mn, charge density en, plus an immobile, uniform, overall-neutralizing back- 
ground distribution of density - en,, with no the equilibrium value of n. The equations 
for the mediumare linearized in the displacement t ( r ,  t )  from equilibrium; hydrodynamic 
pressure and the static distortion of n near the surfaceare neglected. Accordingly wehave 
n = no-no div 6, and there are volume charge and current densities given by 
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p = - en, div 5. j = eno( (1.11 

0 = enotl(z = 0-). (13 
(Subscripts I and jl denote components of vectors normal and parallel to theinterfaEl 
In linearized apprpximation there are no genuine surface currents, since these wouldbe 
proportional to 05, which by (1.2) is quadratic in 5. 

The model thus defined is widely used as the starting point for discussing surfag 
problems; for instance by Elson and Ritchie (1971, to be referred to as ER). AS fori& 
resemblance to real metals, the neglect of pressure effects and of equilibrium s d a  
distortion is probably acceptable at least qualitatively, provided the atomic distance: 
is well above the Fermi wavelength and the Thomas-Fermi screening length. MOrr 
serious may be the failure of the model to accomodate Ohm's law at low frequenis 
But such dissipative effects could be allowed for, from first principles, only by introducing 
statistical mechanics as well as quantum mechanics, a d w e  want to avoid this in orderto 
retain as clear a view as possible of the consequencesof the latter alone. (By Con'" 
one could fairly easily introduce natural vibrations of the medium governed by mechm 
Gal, ie not explicitly by electromagnetic, restoring forces, making a model of an insulator 
rather than of a metal.) The reason why our model has been so drastically simPlifieda 
that no further non-trivial approximations are then needed to deal with the quantum 
mechanics of its coupling to the Maxwell field, and that one can exhibit in reasonably 
simple form the final expression for the level shifts, and especially its asymPtotics 'Or 
small and for large values of z. For further discussions ofthe limits of applicabilitY Of' 
model, see Heinrich (1975) and Mukhopadhyay and Lundqvist (1 975). 

and a surface charge density on the interface (the z = 0 plane) given by 
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"Ibe decay rate in this model has already been calculated in an exemplary paper by 
wt(1975); hence we shall concentrate exclusively on the energy shifts. In Q 2.1 we 
dehequa&ation of the medium coupled to the Maxwell field, proceeding through 
kbal normal modes, essentially in the footsteps of ER. Here one meets the diffi- 

earlier, which is closely related to the choice of gauge and to the coupling 
field and atom. Luckily, for neutral systems, it can be sidestepped by aid of the 

Wr-zienau transformation. These problems are discussed and resolved in outline in 
pwbich  can be skipped by readers already convinced by Q 2.1. The treatment of 
@ systems is reserved for another paper. In Q 3 we outline the ordinary second- 
(Idrrpeflurbation calculation of the ground state shift, and rewrite the result as a Laplace 
"sfom for later convenience. In 0 4 we simplify the ground state expression in some 
wting special cases, and in the asymptotic regions where z + 0 or z + CO. In Q 5 we 
awitb the shifts of excited states; these are relatively easy to handle given the results 
d#3 and 4, though no provision is made for them by the Lifshitz formalism in its 
p t  state, which is precisely one of the motivations of this paper. It turns out, a 
psreriori, that for small z, corrections peculiar to excited states are unimportant, and 
hat the Lifshitz theory naively applied gives correct results ; but that they dominate 
br large z where they completely swamp the famous Casimir-Polder potential and 
rhere they, alone, are responsible for any 'correspondence' between classical and 
pnmm results. In $ 6  we summarize our results and compare them with earlier 
fpproximate or classical ones. 

L Normal-mode expansion and field quantization 

Ing2.1 wequantize the Maxwell field and the semi-infinite medium in mutual interaction, 
mploying the standard elementary procedure which identifies the normal modes, 
cnpdndsthefields in terms of these, and imposes commutation rules turning the expansion 
QM3cients into annihilation and creation operators. This method is adopted in order 
lopostpone for as long as possible the problems which in a canonical field theory 
procedure force one either to introduce an indefinite metric or, adopting Coulomb 
baW, to treat formally unretarded electrostatic forces on a different footing from all 
othereffects (Bjorken and Drell 1965); both procedures being particularly unsuited to a 
&-infinite medium. It turns out that the elementary method suffices if the atomic or 
mlwhr &stem (henceforth 'atom' for short) whose energy shift we need is overall 
mhl; then the interaction Hamiltonian between it and the Maxwell field is - d .  E, 
deedis the atomic electric dipole moment operator and E the electric field. The prob- 
buncovered by any attempt to deal simultaneously with charged systems and with 
mdation are discussed in Q 2.2, together with the outline justification of 6 2.1 in terms 
Olthestandard canonical Coulomb-gauge quantization and its interaction Hamiltonian 
( ~ C h i S  equation (2.22) below). 

fnibes~ntials we follow the method of ER, and refer to them for details; but must 
Wnd it to (partially) transmitted waves with frequencies o > up, where wp is the 

frequency given by 
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We use natural units, h = 1 = c, with e2/hc 'Y 1/137. The equations of motion an 
Newon's law for the medium (neglecting the Lorentz force), and Maxwell's quaticas 
for the field. Their linearized form, for harmonic normal modes with time dependeaa 
e-", is 

-wZM5 = eE C2.q 
which allows 5 to be eliminated in favour of E, and 

div E = -4m0e div 5, 
curl E = i d  

div B = 0 

curl B = - iwE- io4xeno5. 

menever no or wp appear in a field equation or a volume integral, it is understood that 
they behave as if they had as a factor the step function 6( - z),  (not shown), ie they have 
constant values for z < 0 and vanish for z > 0. The effective boundary conditionsat& 
interface follow from Maxwell's equations themselves : B and E,, are continuous, and 

(2.41 E,(z = O+)-E,(z = 0 - )  = 4no = 4nenot,(z = 0-) 

where (1.2) has been used in the last step. The total energy of medium plus Mawdl 
field (not a Hamiltonian at this stage!), is 

6 = j dV( ;noMg' +;(E2 + B 2 ) ) .  

Equations (2.2H2.4) admit two types of normal modes. The longitudinal modes 
have B = 0 everywhere. E = 0 for z > 0, and curl E = 0, div E # 0 for z < 0. It is well 
known, and tj 2.2 will confirm it, that these modes are not coupled to any neutral systm 
wholly outside the medium ; hence we ignore them from now on. The other, so called 
transverse, modes have div E = 0 for z > 0 and z < 0, ie everywhere except on the 
interface, where div E has a G(z)-type singularity. Hence it is convenient to intrcducea 
vector potential A : 

B = curl A ,  E =  -A' (16) 

divA = 0 for z # 0. (171 

As discussed in 0 2.2, this is not the usual Coulomb or radiation gauge: but with it We 

shall need no scalar potential, in the sense that the normal mode amplitudes, the energ)' 
8. and later on the atomic coupling are expressible in terms of A alone. 

The so called transverse modes subdivide into three-dimensional modes (photons\ 
and surface plasmons. The photon modes are expressible in the form 

(18) 

where the N are norming constants to be chosen later, k and p are two-comPonent 
vectors parallel to the interface, and q is the vacuum wavenumber noma1 to the inter. 
face. For photon modes, 

and to choose a gauge so that 

A@, z)  = N ex& - iot + ik . p)f(q, z )  

0 = (k2+q2)"2.  (2.91 

In % $ 4  and 5 we shall need o for real k but complex q. In the complex q plane, 
defined by branch cuts along the imaginary axis from ik to ia and from - ik to -is0" 
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itive along the real q axis and along the uncut part of the imaginary axis, and 
ve(negative)imaginary on the right (left) edge of the upper cut. We shall also need a $dP 

posm wn Q of alone, 
Q = (q2-0p2)1'2 (2.10) 

Ip,ingacutfromq = -up to q = +wp along the real axis, real positive (negative) for 
< -up), and having positive imaginary part when Imq > 0. Throughout '' op(4r, when q is real and on this cut, it shall be understood to be on the upper edge @PPe 

,$&eat, where Q is positive imaginary. Finally, it is convenient to define €(a), which 
ip &e classical theory plays the role of dielectric function, 

40) = 1 - 0 ; / 0 2 .  (2.1 1)  

At this point one is in a position to determine the normal modes by explicit calcula- 
We confine ourselves to displaying the results for only those parts of A which 

h b e  (partially) transmitted waves, having therefore q > up, and denoted by A ,  ; 
to adapting from ER the part describing surface plasmons, denoted by Asp. For 

lhetotally reflected waves A < having 4 < wp we refer to ER ; note that for each value of 
tandq, and for each polarization s or p, there are two independent modes in A >,  but 
dyone in A , .  The fields displayed will suffice to illustrate all the results needed later. 
ln the following formulae, 2 and are unit vectors in the indicated directions, and HC 
nands for 'Hermitean conjugate'. 

I.polmized photons with q > up 
m 4 112 

dq e'"Pk nS[ ( ) (e( -2) cos Qz+B(z) cosqz)a,,(k,q) 
41 +Q/d 

pplarized photons with q > up 

(2.13) 

P ~ m " .  These amplitudes decay exponentially with increasing (zl, and are 
'y specified by the momentum k alone. Their frequencies ii, are given by 

6 2 - 1  - sp 2 + k2 - (&o; + k4)"' 
(2.14) 

00. Define quantities ijand 0, related to k and ii, ?&gfromO for k2 = 0 to &; as kZ 
the same WaY as q/i and Q/i relate to k and w : 

(2.15) 
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M e  also 

2 = 45) 

and the norming function 

Then ER'S expression for A,, becomes (bearing in mind that their medium o c c u p i ~ ~  
halfspace 2 > 0) 

(217) 

The commutation rules are that each a and a+ opra to r  in equations (2.12),(2.13)& 

W) 
Normalizations have been so chosen that, on adjoining ER'S expression for A , ,  and 
substitutingA = ( A ,  + A  < +ASp)into(2.5)via(2.6)and(2.7), oneobtains the Hamiltonian 
operator (dropping the zero-pomt energy), 

H = -( ~ w , - q ) ( a : a , + a , + a , ) + ~ ( q  -q,) (aLa,,+ai,a,j 

(2.17) commutes with all others except its own Hermitean conjugate: eg 

[as& 4). a:1 (k', 4'11 = W - 0% -4'). 

1=1 ,2  

(1 19) 

where U, a,, a p ,  a,, and apl are functions o f g  and k .  

medium by 
The quantized fields are coupled to a neutral atomic system situated outside lht 

Hi,, = - d .  E kw 
where E = -A  is the electric field at the system and dis the total electric dipole momenl 
operator. The variation of E across the system, ie higher multipoles, will be ignoredfor 
simplicity. For a single-electron atom with fixed (infinitely massive) nucleus, to which@ 
c o n h e  ourselves most of the time for definiteness, one has 

Hinr = - e r .  E (221) 

wherer is the position vector of the electron relative to the nucleus. The c o ~ p l i n g ( ~ ~ ) u  
justified in $2.2. 

2.2. Coulomb gauge and Power-Zienau translormat ion 

The standard canonical way to quantize the Maxwell field (Bjorken and Drell 1965)ist0 
express its transverse-electric and its magnetic components in terms of A ,  with divA.=' 
everywhere (as in equation (2.6) but with E replaced by ET alone), its longitudlnaG 
electric p a t  as EL = - V4, to quantize A ,  and to express 4 in terms o f  the instantaeous 
charge density p through the unretarded Poisson equation ~ 2 4  = -4np. Particlesol 
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esnd mass m are then coupled to the field not by (2.20), but by dw 
tsatrnlV infinite medium the argument of 4 2.1 still proceeds straightforwardly, the A 
addiotrodusd there being identified with that of the Coulomb gauge, and the coupling 

-cles other than those subsumed into the medium represented by (2.22). The only 

w t  diagonalization of the field-medium coupling has been given by Chappell et a1 
(Iws); theaodcal treatment of the analogous problem for an infinite insulator is due 
,Hopfield(1958, 0 3). But for our semi-infinite medium the expressions of 0 2.1 are not 

in the Coulomb gauge, because A (and E )  have non-zero divergence on 
*hterface (see equations (1.2) and (2.4)), and because we have not introduced the 
&potential which in Coulomb gauge is due to the surface charge (1.2). 

~ t t b i ~  stage it is not obvious how to proceed; certainly one must not use the expan- 
&dAgiven in tj 2.1 jointly with the coupling(2.22), because we have not yet produced 
tdefmitjon of 4 compatible with that of A. Though it would be fairly straightforward 
@do &is for a purely passive medium, it is not quite so easy for our case of an active 

Lmuy,in thecaseofaneutralatomic system wholly outside the medium, the dilemma 
#described can be sidestepped by appeal to the canonical transformation of Power 
ndzienau (Power and Zienau 1959, Power 1964, Woolley 1971), and we now outline 
tstsequence of the argument. First, envisage the Hamiltonian for medium, atom, plus 
Maxwell field, with true Coulomb-gauge coupling of the type (2.22) of field to medium 
mdEeld to atom. Then the Power-Zienau transformation essentially replaces all these 
mpliigs by new couplings of the - d .  E type between each matter system and the 
wtitedfield E, which is now required to be transverse (to have div E = 0) only outside 
kmedium and the atom. In the transformed Hamiltonian, there is also a new term 
h, containing the effects of the longitudinal field internal to each matter system 
pparately. Thus, the longitudinal plasma oscillations, just like the unperturbed atomic 
plagy levels, appear as consequences precisely of HselP, which however contains no 
whteraction between the matter systems, and is irrelevant to the interaction of each 
WErsYstem with the quantized field, 

Inthe final step one diagonalizes that part of the Hamiltonian which contains the 
Maxwell field and the transverse oscillations of the medium, either implicitly, 

bybdingthe ~ormal modes as in !j 2.1, or formally by adapting the method of Chappell 
ad(1965) to a semi-infinite rather than an infinite medium. Then one arrives precisely 
'theprescription given in 8 2.1. 

Unfoflunately, the Power-Zienau transformation is not applicable to systems with 
m.ErO total charge. For instance, in order to calculate the interaction between the 
Mum an external electron, we should be forced back to the coupling (2.22) and 
*OU'd have to recast the treatment of the active medium so as to produce a consistent 
mnptionfor 9 as well as for A.  It is remarkable that the need for such a full treatment 

felt in the literature on surface effects. This is due to a coincidence; those 
%'likeER,have taken full account of retardation, have not had to deal with charged 
partid'; wMethose who have dealt with charged particles have neglected retardation. 
In this context* to neglect retardation means that one works from the outset in the bit 

where there are only electrostatic forces and potentials governed by 
p"4poos equation7 and that one finds and quantizes the normal modes of the medium 

An elegant example of this procedure is the work of Brako et a1 
ktl 

H ; ~ ,  = e$ - eA . p/m i- e2A2/2m. (2.22) 

lopam is to drop the reflected components and the surface waves from A. (An 

not describable by a frequency-independent dielectric constant. 

yet 

. '7 
y m  this 
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(1975). As far as we know, the published literature contains at most one clue (perhapia 
the paper by Mahan 1972) that in quantum mechanics it may be awkward to tnat 
&arg& systems and retardation together in surface problems. 

Finally, one should perhaps underline the paradoxical status of surface plasmODsip 
the c -+ M limit as compared with the real world. For c -+ CO, one has (3 = q,/J2rorall 
wavelengths, short or long, and curl E = 0 everywhere; by contrast, with hitl 
0 = o J J 2  is achieved only for infinitely short wavelength, and the surface modes arc 
unmistakably transverse, having curl E # 0 everywhere. 
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In this section we calculate the zdependent part A(z) of the ground state energy shihb 
elementary perturbation theory. The z-independent part, which contains the ord& 
Lamb shift and diverges, is dropped systematically, so that by definition A(m) = 0. By 
this step one abandons the guaranteed negative-definite property of second-order ground 
state shifts. It will become obvious presently why excited states are reserved for separalc 
treatment in ij 5. For simplicity we deal explicitly with a single-electron atom; theresults 
are easily adapted for arbitrary neutral molecular systems. In summations over atomic 
states l j } ,  we encounter the energy difference E j o  = E j - E o ,  and matrix elemem 
I(jriO)l*, where 10) is always the state whose shift A is being calculated. To ease the 
notation we shall often write these quantities as E and r:, whenever the context prevents 
confusion. The summation indexj will also be dropped from C j .  Note that theatom-[+ 
medium distance z is not the third component of the internal atomic coordinate r, and 
that r,’ = r:, .fi EE rf +rf .  We shall need the expressions for the static atomic polariz- 
ability, parallel and normal to the interface, of the state 10) 

and the oscillator sum rule for each Cartesian component ri of r : 

1 r ; E  = 1/2m. 

(3.11 

(3.21 

For more complex systems, er is replaced by the appropriate total electric dipole oPmtor 
d. For instance, consider a rigidly-rotating diatomic molecule with Hamiltonianpj2. 
moment of inertia I, and suppose that the electronic dipole moments are neghtd-@ 
that d = (6e)R, where de is a charge difference and R the relative position vector of the 
two nuclei. Then in (3.1) we simply replace er -, d, while a simple calculation showSW 
(3.2) is replaced by 

C I < J l ~ i I O > 1 2 ~ j o  = <Ol(d* -d?)10)/21 (S! 
j 

a consequence of the commutator L x d = id. 
The perturbation is Hint (equation (2.21)); the Hamiltonian for the field is 

IO, 0) contain the atom in its ground state IO), and no quanta excited; and f?d ‘he 
the atom in its state 1 j )  and a quantum of typey excited, where y can be a surface Plasmoa 
or an s- or gpolarized photon with q > up (suffix >) or 4 < up (suffix <); and letah 
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k#aergy of the quantum (ie wy = dk, q)  or o = Q(k)). Then 

-10) is the ground state, E .  '0. > 0 for a l l j  and no denominators vanish. 
Weconsider in turn the contribution from the various types of quanta. 
From s-photons, with q > up, we obtain straightforwardly, using (2.12), 

h ~ & a d y  performed the integral over the direction of k ;  the factor cos 2qz enters 
the identity cos2 qz = &1 +cos 2qz) after dropping the z-independent part. 

Itturns out that the contribution from s-photons with q < op is also expressible 
i,&fom (3.9, if the q integration ranges from 0 to a,, and the real part of the result is 
& ( d l  that Q is imaginary in this region, and the definitions in§ 2.1). It is convenient 
mcombinek, +A,,. = A, and to rewrite A, so that theq integration extends along the 
&e real axis (above the cut due to Q). This gives 

Wy, we recast A, as a Laplace transform, by deforming the q integration path, for 
WSsothat it runs along the upper branch cut due to CO, from icc to ik on its left edge 
mdfrom ik to ico on its right edge. Writing 

q = iy 

hk yields a double integral with limits J$ dk J? dy . . . , in which we interchange the 
wder of integration to J; dy SS dk . . . . The result is 

k integral is elementary and gives 

bPhcipal branch of the arctangent is meant. 
For Pphotons, similar steps lead to the analogue of (3.6) 

a2(d = q(q - Q) q(q - Jm). (3.10) 
bde"ing the q integration contour, one must now be careful to pick up residues 
'thePOkS at CO' = a2, which have no counterpart in As. Accordingly, we write 

A, = A,(cut) + A,(pole) (3.11) 
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and find eventually the analogue of (3.8) 

Finally we need Asp. From (2.17) one obtains directly 
m 

Asp = -e2 dk ke-Yz 
0 

(3.14) 

(3.19 

Changingtheintegration variable from k to 4, onediscoverseventually that A,,identicall~ 
cancels Ap@ole) as given by (3.14). Hence the total shift is just A = As + A,(cut). Before 
combining them we can use the sum rule (3.2) to simplify those terms in the integrands 
which contain E only as a multiplicative factor, like the first term in the last bracket in 
(3.8). Then by adding (3.8) and (3.12) we obtain our final result for the ground stateshdt: 

(3.161 

4. G r d  state asyinptotics and special cases 

4.1. Special limits 

Though the full expression (3.16) may look forbidding, it simplifies in many specid 
interesting limits. We shall consider: (i) the non-retarded (m) limit c -, E: the 
'perfectanductor' (PC) limit wp -+ cc (so called because the medium then excludesthc 
field completely), which was obtained in I ; and, more interesting, the asymptoticexP@ 
sioas for small 2 and for large z in powers of z -  '. Not all these limits are interchanPbk 
Each term in Zj is effectively a function of two dimensionless variables, say zEjo and '%' 
3s well as of a dimensional variable (say e2/zj: thus the small-z asymptotics ap$Y wheo 
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z ~ p  << 1 and zEjq << 1 for the dominant terms in Z j ,  and similarly for the 
d@ 'on. Therefore the limit CO, 4 CG is not compatible with z -, 0 asymptotics, szs compatible with z -+ cc asymptotics. Even for large cop, in the sense that 
,E. for all important statesj, there is still a narrow region where z a p  < 1, and the 

&tanductor results apply only outside this region. These provisos must be borne 
it ad while interpreting the perfect-conductor and the asymptotic approximations. 
T~ obtain the NR limit we restore factors of c in (3.18) by replacing e' -P e2/c, 

+ @2, E 3 E/c, and multiplying overall by c2 to get the right dimensions. One 
rill$ 

JO 

-- 
e2 

lim A ANR = --E @'IJ2 (ri + 2r:) 1; dy e-2yzy2 
c- m 4 E + wp/J2 

%ugh the limit c -, CO as such is academic, we shall see that the function ANR enters 
&,J in other contexts. 
ne perfect-conductor limit of (3.18) is 

(4.2) 

wkb is equivalent to equations (2.14) and (2.16) in I (noting the identity tan-'A+ 
m-'1/1. = x/2). 

4.2. Small distances 

h i s  themost promising region for experiment since A is largest here. For comparison, 
rheperfect-conductor resuit (op + CO first, z + 0 second), obtained in I, is 

wberepis themomentum conjugate to r. The O ( Z - ~ )  term is the Lennard-Jones (1932) 
Potential, simply the expectation value of the electrostatic image energy due to the 
aomicdipole er. The other terms in (4.3) are commented on in I. 
TO obtain the z + 0 asymptotic expansion of (3.16), we note that for z + 0 the y 

"tion diverges at its upper limit ; hence we expand the integrand, apart from the 
in ascending powers of y- l ,  as for large y, and integrate term by term. For 

hPii%' we consider only terms diverging like a power as z + 0. As y + CO, y/cc and 
Y!.E bath diverge; note in particular the expansion 

... (4.4) 

when(4.4)iS substituted into (3.16), the last term, containing e( -Ejo), gives a contribu- 
'?. If 10) is the ground state, every ST vanishes because every Ejo > 0, but 6* 

auvives for excited states and will be needed when discussing them in 8 5. 
'e actual expansion beyond the leading term is tedious, and we quote only 

A(op3z) - A N R ( ~ p , ~ ) + O ( ~ - l )  (4.5) 
is the Same function which enters the c + CO limit (4.1)- The O(2-I) term is 
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too cumbrous to be worth quoting. Comparing (4.5) with AK in (4.3) we see thatar 
far as their respective leading terms are concerned, the order of the limits up -$ 

z 4 0 can be interchanged, though one has no right to expect this, as explained b441 
More remarkable is that A, in contrast to AK. lacks a term of O(Z-~) .  Though & ai-') part of AK is common to all states and consequently cancels from frqw 
shifts, it would be observable in principle by measuring the force between atom 
metal. The absence of such a component from the more realistic expression (4.5) suggeffs 
that with real metals the observed potential (Shih et al 1974, Shih 1974) should fdim 
the f3 law rather closely. 

Though in most cases of interest one expects w, > EjO,  it is amusing to COG& 

the limit of ANR for op/E << 1. By equation (3.1), this gives 
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(4.6) 

4.3. h g e  distances 

As z -* m, the integral in (3.16) is dominated by the region next to its lower limit: hence 
one expands the integrand in ascending powers of y, as for small y ,  and integrates term 
by term. In this case the expansion contains no terms, like 6*, depending non-analpically 
on the sign of E. Irrespective of the value of up, provided it is non-zero, one finds 
straightforwardly the same famous Casimir-Polder potential which applies for p e r f .  
conductors : 

A - -(2n,, + ~ , ) / ~ R Z ' + O ( Z - ~ ) .  (4.7) 
This is not surprising, because the physics of the Casimir-Polder argument implies that 
as z -+ CO, A should depend only on the static (zero-frequency) polarizability oftheatom 
and of the metal ; and at zero frequency there is perfect screening in our model even for 
finite 0,. Alternatively, the fact that the leading term of A: as z 4 CO, is independenl 
of a,, could have been foreseen from the dependence of A on the dimensionless variable 
zw,. The apparent paradox that as LO, -, 0, the plasma vanishes, while the shift (4.7) 
does not, is resolved because (4.7) ceases to apply once wpz ,< 1, and as   LO,^) -, 0 is 
replaced by (4.6) which does vanish with U,. 

5. Excitedstates 

Even when 10) is not the ground state, the expressions (3.6), (3.9) and (3.15) aPPlY 
provided we preface the integrals with the Cauchy principal-value prescription P when 
E j  EO, SO that Ejo is negative and the denominators ( E  +U,) can vanish. Thus the 
technical problem is to modify the contour deformations which led from (3.6) and 
to the final Laplace transforms, in order to take account of the vanishing denomhato% 
For the frequency shift, (Ai -Af), of the atomic transition i -, f, this is an unavoidMe 
complication, because in the sum giving Ai, the state f will certainly enter and intrduf 
it. For a firstexcited to ground-state transition this is the only dangerous term, but lo 
general there may be several in both Ai and Af . 

The htegtands of 4 and Ap now have poles in the q plane at w = /.El, which de- 
pending on the ratio kA4,  can lie either on the real axis or on the imaginary axis beioa' 
the branch point at ik. In the former case the P integration path must be completed bf 
small semicircles around these poles before it can be deformed, in the way disc& 
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a correction term added to A in consequence. When the new poles are on the ’ axis, we need only pick up their residues in addition to the contribution from w stsfo cut, which gave A. Let us denote by AT the new contribution to A from just 
psach state j having E j  < Eo, SO that the total shift AT becomes (suppressing the 
-tion index j on AT), 

Quantum frequency shifts near a plasma surface 

wevaluation of AT is straightforward though it demands care; in particular there is 
a cancellation between contributions from p-photons and surface plasmons. 

~ ~ d l y ,  one finds, with ct2(iy) as given in (3.13), 

%integration contour C runs along the imaginary y axis from -ilEl to 0, and then 
bg &e real axis to +to. The two portions of C arise from the two possible pole 

in the q plane, noted above. The principal value prescription is needed when 
Q < E ~  < 02/Z for then the integrand has a pole on the positive real axis. 

Note that no straightforward attempt to continue (3.16) analytically to negative E 
ayield the correct expression for excited state shifts; one must go back to (3.6), (3.9) 
aad(3.15). Like the exact expression for A itself, (5.2) is rather uninformative at first 
@,but simplifies in the two asymptotic regions. 

Deal first with small distances. In addition to A* we must include the correction 
Pdefined just below equation (4.4). But (A*+6*) remains bounded as z 4 0. To see 
4 consider A* as given in equation (5.2) ; for small z ,  only the large-y integration 
@on is relevant. Hence, up to bounded terms, we can drop the part of the contour 
Cktween -i(El and the origin, and need extend the y integral only from 0 to +CO 

dong the real axis. But it is easy to verify that this integral is identically the negative 
dds, obtainable from (3.16) by taking only the terms with factors tan- ‘ (y /E)  and then 
*gall these factors by - n. The conclusion is that, as z --t 0, the total shift is given 

for excited states by the expansion (4.3, obtained in this limit from (3.16) and (4.4) 
de simply ignoring the last (6 function) term of (4.4). This prescription is correct up 

It follows in particular that ANR(up, z), as given in (4.1), remains the leading term 
mforexcited states. If the sum contains a term with E j ,  ‘v -up/J2, then there will 
kaaOng enhancement of A. In the strict non-retarded limit this is understood as a 
m*r@onance (degeneracy), between the atom and the surface plasmons, which in that 
lmtt dishare the unique frequency up/ J2. For finite c it is due to the discontinuity in 

of states where the surface plasmon spectrum cuts off at up/ J2. 
BY contrast, at large distances there are drastic changes peculiar to excited states. 

there are no corrections to the asymptotic form of A itself, already calculated, 
won (4.7) (see the remark at the start of 0 4.3), one need only add to A the large-z 
*totic form of A* in equation (5.2), obtainable by the method explained in 5 4.3. 
hfust that the integration path C can be completed by a small detour round the 
?On the real axis (when, for 0 c E’ < 4 / 2 ,  such a pole is present), since the cor- 
&’ for this introduces only terms vanishing exponentially with increasing z, and 

remaining finite as z 4 0. 
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hence negligible in comparison with the inverse-power terms we already have. Afta 

to cx) along any convenient path in the right-half plane. This reduces the problwto 
finding the asymptotic expansion of the function 
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completing the contour, it may be deformed, away from the origin, to mn from -44 

f(y) being defined by comparing (5.2), (5.3)and (5.4). But a standard piece of mathemah 
leads to the asymptotic series 

where fcn)ly) E dy/dy”. 

Then, one finds 
It is convenient to define, for each Ejo ,  a dimensionless variable x j  I x 5 JE&, 

(5.6) 

The terms are too cumbersome to be worth quoting. Evidently, as : + x .  
A* with its terms of order z-  and z - ~  completely dominates A, which decreases l&c 
z - ~ .  In the limit up -, a, (5.2) and (5.6) correctly reduce to the corresponding perfea- 
conductor results in I. 

The factor in square brackets in (5.6) is the classical Fresnel reflection coefficient f 
of the medium for light of frequency IEl incident normally: 

F = (€1’2- 1)/(€”2+ l), c = 1 -og/E’. (5.71 

Some insight into why F should enter here is obtainable from the classical model 
of CPS (1974, 1975, a,b). They consider a classical dipole oscillating with frequency 
IEjol in front of a mirror, under a given mechanical restoring force, and calculate 
change in frequency due to the action on the dipole of its own retarded field r e f l e d  
from the mirror. We refer to them for the full classical arguments and make only 
following observation. It is to be expected that the O(z- ’ )  component of the field 
should be reflected from the mirror to the dipole with the same reflection coefficientf 
which applies for light, since both are purely transverse waves. When the details 
followed through, this accounts, at least by analogy, for the term r i / x  in (5.6) That 
should be so directly relevant to both O(X-~)  terms as well is an unexpected bonus. 

6. Cooclusions and comparisoos 

We summarize our main findings and compare them briefly to classical analogues and 

calculate the effects on a nearby neutral molecular system. The method was jus u6ed 

to earlier results. Such comparisons were motivated in the introduction. 
The simple model of a plasma defined in 0 1 was quantized in tj 2.1, adequatelYro 
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in which we also pointed out the problems in extending it to charged systems. 
~ 4 2 2  energy shift A ofthe neutral system ground state is (3.16). Its asymptotic form 
aica 
rsmaU 

distances z is indicated in (4.9, the dominant term ANR (equation (4.1)) co- 

iriamg 
h e  limit of A as c + co. The asymptotic form for large z is (4.7), the 

Polder potential. For excited states the full level shift is (A + X,Aj*), containing &- &addend yj* given in (5.2), where one AY enters for each level j below the one whose 
in quation. For small z, the asymptotic expansion of (A + ZjA?) has the same 

dcfom namely (43 ,  as for the ground state; in other words for small z no special 
@tion need be paid to excited states as such in the end result, though this emerges 
081yBpstgiorj. But for large z,  the A? dominate, and are given asymptotically in (5.6). 
wc mentioned an analogy, relevant at large z, between individual terms A: in the 

a d  the frequency shift of a classical oscillator with frequency IEjol. This 
saaogy is inspired by the recent work on classical models by CPS (1974, 1975 a, b). 
rsoogh it daws some insight, it is ineffective for prediction except for first-excited to 
@-state transitions observed at large z, for reasons given in the first paragraph of 

it depends on envisaging a correspondence between transition matrix elements 
&the classical oscillating dipole amplitude. 

A; small z, and in the special case of a ‘perfect conductor’ (infinite plasma frequency 
$there is a very different type of correspondence, namely, between the expectation 
&of the squared dipole operator and the square of the classical dipole moment. 
%appears in the Lennard-Jones potential, the leading term of (4.3). But in the more 
@expression ANR (up, z), equation (4.1), valid for finite up, this correspondence is 
targely lost or at least obscured, because the result once again depends on sums of 
spared transition matrix elements. Some classical analogies could be salvaged even 
fmn this expression by representing the atom as a collection of oscillators, but to 
modern eyes the details would not be illuminating. 
TO avoid all ambiguity we should state that we believe CPS (197%) to be mistaken 

when they ascribe to Barton (1974) the conclusion that classical shifts dominate at all 
diffances. Possibly this misunderstanding arises from applying the general formulae 

I for a perfect conductor to the very special case of a harmonic oscillator ‘atom’, 
and &g at face value some coincidences in the frequency shifts (even though the 
@Gdences do not occur in the level shifts themselves). In any case we believe that the 
ksical theory has no predictive power as regards frequency shifts, though, as demon- 
strated by CPS taken together with Philpott’s (1975) work, it is valuable as regards 
aidths 

Moreimportant is to compare our results with those first derived from Lifshitz’ 
lbeoqbY Mavroyannis (1963), whose work is still the most accessible exposition. Note 
?MaQoYannis gives only averages over atomic orientations ; hence we must replace 
Y p, Jf -, $r2 before comparing our results with his, and we understand that this 
hs been done. 

MavroYannis has two expressions, one stated to be exact but too difficult to evaluate, 
Othery his equation (16), approximate but stated to be correct for small z.  Our 

mainly to the latter. After some integrations by parts it can be ex- 

I .  

f +  

P-W in Our notation as 

E ’  
Sa dy e - 2 Y Z y 2  tan - 1 ___ - - 

up/2112 wp/2112 E 

22 
Atl= -z- Er2 

E2-uOp2/2 0 

hshould be compared to our exact result (3.16). Noting that 
a2(iy) = &;, 

from (3.16) if, Ud hoc, one retains only the last term under the that ‘M 
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sumation, and then replaces the integrand everywhere by its asymptotic fom fa 
large y. 

In the limit U, -, 00, AM agrees, for all z, with our prfect-conductor result (43, 
which, in this limit, is exact for the ground state. But AM does not contain the 
@iar to excited states, because for large z it gives the 0(zd4) Casimir-Polder 
for all states. Since the terms dropped and retained in Mavroyannis’ approximation 
all share the same q plane poles, the A* must have been missing from his s u p p ~ ~  exact 
expression as well. A5 explained in the introduction, this is what one expects in 
Lifshitz theory. 

Finally, at small distances, AM correctly reproduces the dominant term ANR in (4.4 
which Mavroyannis was indeed the first to discover. However, (for finite up) thereis1 
discrepancy between A M  and the asymptotic form (4.5) of the exact expression, as 
regards the next-to-leading terms. In AM the next-to-leading term turns out to bed 
order In 2, while in (4.5) it is of order Z- I .  

These comparisons taken together suggest that, though (6.1) has many valuable 
features, it cannot be relied on in detail. More important, in common with the full 
Lifshitz theory in its present state of development, it cannot deal reliably with exciied 
states. 
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